Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1309709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156010

RESUMO

Introduction: Understanding the gut microbiota and antibiotic resistance gene (ARG) profiles in non-human primates (NHPs) is crucial for evaluating their potential impact on human health and the environment. Methods: In this study, we performed metagenomic analysis of 203 primate fecal samples, including nine NHP species and humans, to comprehensively characterize their gut microbiota and ARGs. Results: Our study reveals the prevailing phyla in primates as Firmicutes, Bacteroidetes, Euryarchaeota, and Proteobacteria. The captive NHPs exhibited higher ARG abundance compared to their wild counterparts, with tetracycline and beta-lactam resistance genes prevailing. Notably, ARG subtypes in Trachypithecus leucocephalus (T. leucocephalus) residing in karst limestone habitats displayed a more dispersed distribution compared to other species. Interestingly, ARG profiles of NHPs clustered based on geographic location and captivity status. Co-occurrence network analysis revealed intricate correlations between ARG subtypes and bacterial taxa. Procrustes analysis unveiled a significant correlation between ARGs and microbial phylogenetic community structure. Taxonomic composition analysis further highlighted differences in microbial abundance among NHPs and humans. Discussion: Our study underscores the impact of lifestyle and geographical location on NHP gut microbiota and ARGs, providing essential insights into the potential risks posed by NHPs to antibiotic resistance dissemination. This comprehensive analysis enhances our understanding of the interplay between NHPs and the gut resistome, offering a critical reference for future research on antibiotic resistance and host-microbe interactions.

2.
Cell ; 186(4): 850-863.e16, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803605

RESUMO

It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). This virus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by a furin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity for hDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic in human airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoir hosts of coronaviruses poised for human disease emergence.


Assuntos
Infecções por Coronavirus , Coronavirus , Dipeptidil Peptidase 4 , Pangolins , Animais , Humanos , Camundongos , Quirópteros , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Endopeptidases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeo Hidrolases/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Coronavirus/fisiologia
3.
Adv Sci (Weinh) ; 10(4): e2204990, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36437047

RESUMO

3D printing has become an important strategy for constructing graphene smart structures with arbitrary shapes and complexities. Compared with graphene oxide ink/gel/resin based manners, laser-induced graphene (LIG) is unique for facile and scalable assembly of 1D and 2D structures but still faces size and shape obstacles for constructing 3D macrostructures. In this work, a brand-new LIG based additive manufacturing (LIG-AM) protocol is developed to form bulk 3D graphene with freeform structures without introducing extra binders, templates, and catalysts. On the basis of selective laser sintering, LIG-AM creatively irradiates polyimide (PI) powder-bed for triggering both particle-sintering and graphene-converting processes layer-by-layer, which is unique for assembling varied types of graphene architectures including identical-section, variable-section, and graphene/PI hybrid structures. In addition to exploring combined graphitizing and fusing discipline, processing efficiency and assembling resolution of LIG-AM are also balanceable through synergistic control of lasing power and powder-feeding thickness. By further studying various process dependent properties, a LIG-AM enabled aircraft-wing section model is finally printed to comprehensively demonstrate its shiftable process, hybridizable structure, and multifunctional performance including force-sensing, anti-icing/deicing, and microwave shielding and absorption.

4.
Nat Microbiol ; 7(8): 1259-1269, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35918420

RESUMO

Pangolins are the most trafficked wild animal in the world according to the World Wildlife Fund. The discovery of SARS-CoV-2-related coronaviruses in Malayan pangolins has piqued interest in the viromes of these wild, scaly-skinned mammals. We sequenced the viromes of 161 pangolins that were smuggled into China and assembled 28 vertebrate-associated viruses, 21 of which have not been previously reported in vertebrates. We named 16 members of Hunnivirus, Pestivirus and Copiparvovirus pangolin-associated viruses. We report that the L-protein has been lost from all hunniviruses identified in pangolins. Sequences of four human-associated viruses were detected in pangolin viromes, including respiratory syncytial virus, Orthopneumovirus, Rotavirus A and Mammalian orthoreovirus. The genomic sequences of five mammal-associated and three tick-associated viruses were also present. Notably, a coronavirus related to HKU4-CoV, which was originally found in bats, was identified. The presence of these viruses in smuggled pangolins identifies these mammals as a potential source of emergent pathogenic viruses.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Mamíferos , Pangolins , SARS-CoV-2/genética
5.
Emerg Microbes Infect ; 11(1): 1657-1663, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35678141

RESUMO

Pangolins have gained increasing global attention owing to their public health significance as potential zoonotic hosts since the identification of SARS-CoV-2-related viruses in them. Moreover, these animals could carry other respiratory viruses. In this study, we investigated the virome composition of 16 pangolins that died in 2018 with symptoms of pneumonia using metagenomic approaches. A total of eight whole virus sequences belonging to the Paramyxoviridae or Pneumoviridae families were identified, including one human parainfluenza virus 3, one human respiratory syncytial virus A, and six human respiratory syncytial virus B. All of these sequences showed more than 99% nucleotide identity with the virus isolated from humans at the whole-genome level and clustered with human viruses in the phylogenetic tree. Our findings provide evidence that pangolins are susceptible to HPIV3 and HRSV infection. Therefore, public awareness of the threat of pangolin-borne pathogens is essential to stop their human consumption and to prevent zoonotic viral transmission.


Assuntos
COVID-19 , Infecções por Paramyxoviridae , Vírus Sincicial Respiratório Humano , Animais , Humanos , Pangolins , Vírus da Parainfluenza 3 Humana/genética , Filogenia , Vírus Sincicial Respiratório Humano/genética , SARS-CoV-2
6.
Front Cell Infect Microbiol ; 12: 872841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601103

RESUMO

The Trachypithecus leucocephalus (white-headed langur) is a highly endangered, karst-endemic primate species, inhabiting the karst limestone forest in Guangxi, Southwest China. How white-headed langurs adapted to karst limestone and special dietary remains unclear. It is the first time to study the correlation between the gut microbiome of primates and special dietary, and environment in Guangxi. In the study, 150 fecal samples are collected from nine primates in Guangxi, China. Metagenomic sequencing is used to analyze and compare the gut microbiome composition and diversity between white-headed langurs and other primates. Our results indicate that white-headed langurs has a higher diversity of microbiome than other primates, and the key microbiome are phylum Firmicutes, class Clostridia, family Lachnospiraceae, and genera Clostridiates and Ruminococcus, which are related to the digestion and degradation of cellulose. Ten genera are significantly more abundant in white-headed langurs and François' langur than in other primates, most of which are high-temperature microbiome. Functional analysis reveals that energy synthesis-related pathways and sugar metabolism-related pathways are less abundant in white-headed langurs and François' langur than in other primates. This phenomenon could be an adaptation mechanism of leaf-eating primates to low-energy diet. The gut microbiome of white-headed langurs is related to diet and karst limestone environment. This study could serve as a reference to design conservation breeding, manage conservation units, and determine conservation priorities.


Assuntos
Colobinae , Microbioma Gastrointestinal , Animais , Carbonato de Cálcio , China , Microbioma Gastrointestinal/genética , Metagenoma
7.
Curr Biol ; 32(7): R307-R308, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35413253

RESUMO

Respiratory syncytial virus (RSV) is an enveloped non-segmented negative sense RNA virus that belongs to Orthopneumovirus genus of the Pneumoviridae family in the order Mononegavirales. The virus is the leading cause of severe respiratory disease in children under two years of age and is responsible for substantial disease burden in infants and elder people in both developed and developing countries1,2. RSV is only known to circulate among humans, though it was first isolated from chimpanzees3. The virus can experimentally infect mice, rats, cotton rats, ferrets, and hamsters, but does not naturally circulate in these animal populations4. We found that Malayan pangolins (Manis javanica) were naturally infected with RSVs that have 99.4-99.8% genomic identity with strains circulating in humans. Phylogenetic analyses revealed that five RSVs in pangolins were RSV-A ON1 and seven were RSV-B BA genotypes, both of which are currently prevalent in humans worldwide. These findings suggest that humans might transmit their viruses to endangered wildlife.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Idoso , Animais , Furões , Genótipo , Humanos , Lactente , Camundongos , Pangolins , Filogenia , Infecções por Vírus Respiratório Sincicial/veterinária , Vírus Sincicial Respiratório Humano/genética
8.
Small ; 17(42): e2103322, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523240

RESUMO

Functional surfaces with tunable and patternable wettability have attracted significant research interests because of remarkable advantages in biomedicine, environmental, and energy storage applications. Based on combined defocusing and grafting strategy for processing laser-induced graphene papers (LIGPs) with variable surface roughness (58.18-6.08 µm) and F content (0-25.9%), their wettability can be tuned continuously from superlyophilicity (contact angle CA ≈ 0° ) to superlyophobicity (CA > 150° ), for various liquids with a wide range of surface tensions from 27.5 to 72.8 mN m-1 . In addition to reaching multiple wetting characteristics including amphiphilic, amphiphobic, and hydrophobic-oleophilic states, three designable processes are further developed for achieving LIGPs with various wetting patterns, including hydrophilic arrays or channels, hydrophobic-to-hydrophilic gradients, and Janus. Activated by the customly designed structures and properties, multifunctional and multi-scenario applications are successfully attempted, including 2D-/3D- directional cell cultivation, water transportation diode, self-triggered liquid transfer & collection, etc.


Assuntos
Grafite , Interações Hidrofóbicas e Hidrofílicas , Lasers , Tensão Superficial , Molhabilidade
9.
BMC Biol ; 19(1): 67, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832502

RESUMO

BACKGROUND: Trachypithecus leucocephalus, the white-headed langur, is a critically endangered primate that is endemic to the karst mountains in the southern Guangxi province of China. Studying the genomic and transcriptomic mechanisms underlying its local adaptation could help explain its persistence within a highly specialized ecological niche. RESULTS: In this study, we used PacBio sequencing and optical assembly and Hi-C analysis to create a high-quality de novo assembly of the T. leucocephalus genome. Annotation and functional enrichment revealed many genes involved in metabolism, transport, and homeostasis, and almost all of the positively selected genes were related to mineral ion binding. The transcriptomes of 12 tissues from three T. leucocephalus individuals showed that the great majority of genes involved in mineral absorption and calcium signaling were expressed, and their gene families were significantly expanded. For example, FTH1 primarily functions in iron storage and had 20 expanded copies. CONCLUSIONS: These results increase our understanding of the evolution of alkali tolerance and other traits necessary for the persistence of T. leucocephalus within an ecologically unique limestone karst environment.


Assuntos
Colobinae , Álcalis , Animais , China , Genoma , Presbytini , Transcriptoma
10.
Sci Rep ; 9(1): 19370, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852965

RESUMO

Sepsis is a life-threatening disease caused by infection. Inflammation is a key pathogenic process in sepsis. Paeonol, an active ingredient in moutan cortex (a Chinese herb), has many pharmacological activities, such as anti-inflammatory and antitumour actions. Previous studies have indicated that paeonol inhibits the expression of HMGB1 and the transcriptional activity of NF-κB. However, its underlying mechanism is still unknown. In this study, microarray assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results confirmed that paeonol could significantly up-regulate the expression of miR-339-5p in RAW264.7 cells stimulated by LPS. Dual-luciferase assays indicated that miR-339-5p interacted with the 3' untranslated region (3'-UTR) of HMGB1. Western blot, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) analyses indicated that miR-339-5p mimic and siHMGB1 both negatively regulated the expression and secretion of inflammatory cytokines (e.g., HMGB1, IL-1ß and TNF-α) in LPS-induced RAW264.7 cells. Studies have confirmed that IKK-ß is targeted by miR-339-5p, and we further found that paeonol could inhibit IKK-ß expression. Positive mutual feedback between HMGB1 and IKK-ß was observed when we silenced HMGB1 or IKK-ß. These results indicated that paeonol could attenuate the inflammation mediated by HMGB1 and IKK-ß by upregulating miR-339-5p expression. In addition, we constructed CLP model mice by cecal ligation and puncture. Paeonol was used to intervene to investigate its anti-inflammatory effect in vivo. The results showed that paeonol could improve the survival rate of sepsis mice and protect the kidney of sepsis mice.


Assuntos
Acetofenonas/farmacologia , Proteína HMGB1/genética , Inflamação/tratamento farmacológico , MicroRNAs/genética , Sepse/tratamento farmacológico , Acetofenonas/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/genética , Paeonia/química , Células RAW 264.7 , Sepse/genética , Sepse/patologia
11.
Sci Rep ; 6: 37601, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869186

RESUMO

The medicinal macrofungus Inonotus obliquus widely utilized as folk medicine in Russia and Baltic countries is a source of phenylpropanoid-derived styrylpyrone polyphenols that can inhibit tumor proliferation. Insights into the regulatory machinery that controls I. obliquus styrylpyrone polyphenol biosynthesis will enable strategies to increase the production of these molecules. Here we show that Thioredoxin (Trx) mediated transnitrosylation of S-nitrosoglutathione reductase (GSNOR) underpins the regulation of styrylpyrone production, driven by nitric oxide (NO) synthesis triggered by P. morii coculture. NO accumulation results in the S-nitrosylation of PAL and 4CL required for the synthesis of precursor phenylpropanoids and styrylpyrone synthase (SPS), integral to the production of styrylpyrone, inhibiting their activities. These enzymes are targeted for denitrosylation by Trx proteins, which restore their activity. Further, this Trx S-nitrosothiol (SNO) reductase activity was potentiated following S-nitrosylation of Trx proteins at a non-catalytic cysteine (Cys) residue. Intriguingly, this process was counterbalanced by Trx denitrosylation, mediated by Trx-dependent transnitrosylation of GSNOR. Thus, unprecedented interplay between Trx and GSNOR oxidoreductases regulates the biosynthesis of styrylpyrone polyphenols in I. obliquus.


Assuntos
Agaricales/enzimologia , Aldeído Oxirredutases/metabolismo , Antineoplásicos/metabolismo , Pironas/síntese química , Tiorredoxinas/metabolismo , Biocatálise , Cromatografia Líquida , Técnicas de Cocultura , Modelos Biológicos , Nitrosação , Estresse Nitrosativo , Oxirredução , Polifenóis/metabolismo , Ligação Proteica , Espectrometria de Massas em Tandem
12.
Appl Microbiol Biotechnol ; 100(9): 4123-34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27000840

RESUMO

Nitric oxide (NO) is known to be involved in modulating production of styrylpyrone polyphenols in the basidiomycete Inonotus obliquus. However, it remains unknown how NO orchestrates fungal styrylpyrone biosynthesis. Here, we show that a transient NO burst correlated with an enhanced expression of phenylalanine ammonia lyase (PAL), 4-coumarate CoA ligase (4CL), and styrylpyrone synthase (SPS), the key enzymes involved in styrylpyrone biosynthesis, and subsequently an increased production of styrylpyrone polyphenols. In parallel, the NO burst also resulted in S-nitrosylation of PAL, 4CL, and SPS, which compromised their enzymatic activities mediating a post-translational feedback mechanism that keeps NO-dependent transcriptional activation in check. Moreover, dysfunction of thioredoxin reductase (TrxR) further increased the formation of S-nitrosylated proteins, implicating the significance of the Trx system in maintaining a low level of protein-nitrosothiols. Three thioredoxin-like proteins (TrxLs) from I. obliquus show in vitro denitrosylation potential toward S-nitrosylated proteins via trans-denitrosylation or mixed disulfide intermediates. Thus, S-nitrosylation triggered by the NO burst limits over production of fungal styrylpyrone polyphenols, and denitrosylation by TrxLs that act in concert with TrxR play a key role in maintaining redox balance and orchestrating catalytic activities of the enzymes engaged in styrylpyrone synthetic metabolism.


Assuntos
Basidiomycota/metabolismo , Redes e Vias Metabólicas , Óxido Nítrico/metabolismo , Pironas/metabolismo , Estirenos/metabolismo , Coenzima A Ligases , Retroalimentação Fisiológica , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidroximetilglutaril-CoA Sintase/metabolismo , Fenilalanina Amônia-Liase , Polifenóis/metabolismo
13.
Appl Microbiol Biotechnol ; 99(10): 4361-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25582560

RESUMO

Fungal interspecific interactions enhance biosynthesis of phenylpropanoid metabolites (PM), and production of nitric oxide (NO) is known to be involved in this process. However, it remains unknown which signaling pathway(s) or regulator(s) mediate fungal PM biosynthesis. In this study, we cocultured two white-rot fungi, Inonotus obliquus and Phellinus morii, to examine NO production, expression of the genes involved in phenylpropanoid metabolism and accumulation of phenylpropanoid-derived polyphenols by I. obliquus. Coculture of the two fungi caused an enhanced NO biosynthesis followed by increased transcription of the genes encoding phenylalanine ammonia lyase (PAL) and 4-coumarate CoA ligase (4CL), as well as an upregulated biosynthesis of styrylpyrone polyphenols in I. obliquus. Addition of the NO synthase (NOS) selective inhibitor aminoguanidine (AG) inhibited NO production by more than 90% followed by cease in transcription of PAL and 4Cl. Treatment of guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one did not affect NO production but suppressed transcription of PAL and 4CL and reduced accumulation of total phenolic constituents. Genome-wide analysis of I. obliquus revealed two genes encoding a constitutive and an inducible NOS-like protein, respectively (cNOSL and iNOSL). Coculture of the two fungi did not increase the expression of the cNOSL gene but triggered expression of the iNOSL gene. Cloned iNOSL from Escherichia coli shows higher activity in transferring L-arginine to NO, and this activity is lost upon AG addition. Thus, iNOSL is more responsible for NO production in I. obliquus and may act as an important regulator governing PM production during fungal interspecific interactions.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Polifenóis/biossíntese , Basidiomycota/enzimologia , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Técnicas de Cocultura , Proteínas Fúngicas/genética , Óxido Nítrico Sintase Tipo II/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...